Abstract

The binding affinity of a hydrophobic singlet oxygen probe toward natural organic matter isolates was investigated. A linear phase-partitioning model was used to calculate partition coefficients and intramicellar concentrations of singlet oxygen several orders of magnitude larger than those reported by traditional singlet oxygen probes. From the obtained data, a kinetic model was developed to describe the microscopic environment experienced by hydrophobic compounds in natural water systems. Micellar radii and molecular weights were derived from the experimental data and evaluated. The data obtained provides additional support of a microheterogeneous environment within bulk natural solutions. The enhanced concentrations of photogenerated reactive intermediates within these microenvironments may improve understanding of hydrophobic pollutant degradation in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.