Abstract

The phase-separated structure of solvent-swollen coal was characterized using its proton flip-flop spin diffusion property. Five coals of different ranks were swollen by saturation with deuterated pyridine and were subjected to 1 H NMR relaxation measurements. At least two distinct structural regions exist in the swollen coals based on the transverse relaxation characteristics as reported in the literature. The observed longitudinal relaxation was characterized by a single component, since spin diffusion, i.e., the transfer of 1 H magnetization from the mobile to the rigid phase is active in the swollen coals. The process of this transfer was monitored using a partially modified Goldman-Shen pulse sequence and analyzed with a simple model. It is shown that coal swells in a nonuniform fashion on a fine scale and that phase separation occurs on a scale ranging up to 20 nm even in good solvents such as pyridine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.