Abstract

Bacterial interactions occurring on and around seeds are integral to plant fitness, health and productivity. Although seed- and plant-associated bacteria are sensitive to environmental stress, the effects of microgravity, as present during plant cultivation in space, on microbial assembly during seed germination are not clear. Here, we characterized the bacterial microbiome assembly process and mechanisms during seed germination of two wheat varieties under simulated microgravity by 16S rRNA gene amplicon sequencing and metabolome analysis. We found that the bacterial community diversity, and network complexity and stability were significantly decreased under simulated microgravity. In addition, the effects of simulated microgravity on the plant bacteriome of the two wheat varieties tended to be consistent in seedlings. At this stage, the relative abundance of Oxalobacteraceae, Paenibacillaceae, Xanthomonadaceae, Lachnospiraceae, Sphingomonadaceae and Ruminococcaceae decreased, while the relative abundance of Enterobacteriales increased under simulated microgravity. Analysis of predicted microbial function revealed that simulated microgravity exposure leads to lower sphingolipid signaling and calcium signaling pathways. We also found that simulated microgravity drove the strengthening of deterministic processes in microbial community assembly. Importantly, some specific metabolites exhibited significant changes under simulated microgravity, suggesting that bacteriome assembly is mediated, at least in part, by metabolites altered by microgravity. The data we present here moves us closer to a holistic understanding of the plant bacteriome under microgravity stress at plant emergence, and provides a theoretical basis for the precise utilization of microorganisms in microgravity to improve plant adaptation to the challenge of cultivation in space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.