Abstract

The relationship between micrograin structures and electrical characteristics of sputtered indium tin oxide (ITO) films was investigated. Micrograin structures were observed by a high resolution scanning electron microscope. Electrical characteristics were evaluated by four point probe resistance measurement and Hall effect measurement. Low resistivity ITO films had domain structures. One domain consisted of many sputter grains having the same orientation. The resistivity decreased with increasing domain size. The domain boundary might cause scattering for conduction electrons. Therefore, larger domain ITO films had a higher Hall mobility. The minimum resistivity was 1.8×10−4 Ω cm, deposited at a sputtering voltage of −250 V and a 250 °C deposition temperature. The electron conduction mechanism in domain structured ITO films was taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.