Abstract
Microglia and the border-associated macrophages (BAMs) contribute to the modulation of cerebral blood flow (CBF), but the mechanisms have remained ill-defined. Here, we show that microglia regulate the CBF baseline and upsurges after whisker stimulation or intracisternal magna injection of adenosine triphosphate (ATP). Genetic or pharmacological depletion of microglia reduces the activity-dependent hyperemia but not the cerebrovascular responses to adenosine stimulation. Notably, microglia repopulation corrects these CBF reactivity deficits. The microglial-dependent regulation of CBF requires the ATP-sensing P2ry12 receptor and the ectonucleotidase CD39 that initiates the breakdown of extracellular ATP. Pharmacological inhibition or microglia-specific deletion of CD39 simulates the CBF anomalies detected in microglia-deficient mice and reduces the rise of extracellular adenosine after whisker stimulation. Together, these results suggest that the microglial CD39-initiated conversion of extracellular ATP to adenosine is an important step in neurovascular coupling and the regulation of cerebrovascular reactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.