Abstract

Polymer nanoparticles (NPs) have attracted significant interest in the past years for drug delivery and triggered release. However, it remains a significant challenge to produce polymer NPs with controlled properties and tunable drug loading. Traditional nanoprecipitation often leads to low drug loading. This study reports the development of a new microfluidic nanoprecipitation approach for making polymer NPs with tunable drug loading up to 50%. The synthesized curcumin-loaded shellac NPs remain very stable for the period of our experiments (10 days) under acidic conditions (pH 4.5), but release the payload at neutral pH in a sustained manner. This work provides a new strategy for making drug-loaded polymer NPs with tunable drug loading and triggered release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.