Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, characterized by limited treatment options and a poor prognosis. Its aggressiveness is attributed not only to the uncontrolled proliferation and invasion of tumor cells but also to the complex interplay between these cells and the surrounding microenvironment. Within the tumor microenvironment, an intricate network of immune cells, stromal cells, and various signaling molecules creates a pro-inflammatory milieu that supports tumor growth and progression. Docosahexaenoic acid (DHA), an essential ω3 polyunsaturated fatty acid for brain function, is associated with anti-inflammatory and anticarcinogenic properties. Therefore, in this work, DHA liposomes were synthesized using a microfluidic platform to target and reduce the inflammatory environment of GBM. The liposomes were rapidly taken up by macrophages in a time-dependent manner without causing cytotoxicity. Moreover, DHA liposomes successfully downregulated the expression of inflammatory-associated genes (IL-6; IL-1β; TNFα; NF-κB, and STAT-1) and the secretion of key cytokines (IL-6 and TNFα) in stimulated macrophages and GBM cells. Conversely, no significant differences were observed in the expression of IL-10, an anti-inflammatory gene expressed in alternatively activated macrophages. Additionally, DHA liposomes were found to be more efficient in regulating the inflammatory profile of these cells compared with a free formulation of DHA. The nanomedicine platform established in this work opens new opportunities for developing liposomes incorporating DHA to target GBM and its inflammatory milieu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.