Abstract

AbstractWe report a facile strategy for fabricating fluorescent quantum dot (QD)‐loaded microbeads by means of microfluidic technology. First, a functional fluorine‐containing microemulsion was synthesized with poly[(2‐(N‐ethylperfluorobutanesulfonamido)ethyl acrylate)‐co‐(methyl methacrylate)‐co‐(butyl acrylate)] (poly(FBMA‐co‐MMA‐co‐BA)) as the core and glycidyl methacrylate (GMA) as the shell via differential microemulsion polymerization. Then, CdTe QDs capped with N‐acetyl‐l‐cysteine (NAC) were assembled into the poly(FBMA‐co‐MMA‐co‐BA‐co‐GMA) microemulsion particles through the reaction of the epoxy group on the shell of the microemulsion and the carboxyl group of the NAC ligand capped on the QDs. Finally, fluorescent microbeads were fabricated using the CdTe QD‐loaded fluorine‐containing microemulsion as the discontinuous phase and methylsilicone oil as the continuous phase by means of a simple microfluidic device. By changing flow rate of methylsilicone oil and hybrid microemulsion system, fluorescent microbeads with adjustable sizes ranging from 290 to 420 µm were achieved. The morphology and fluorescent properties of the microbeads were thoroughly investigated using optical microscopy and fluorescence microscopy. Results showed that the fluorescent microbeads exhibited uniform size distribution and excellent fluorescence performance. © 2014 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.