Abstract

This paper presents a novel approach to fabrication of a silicon microneedle array with porous tips. Dry etching technology with SF6/O2 gas by STS's inductively coupled plasma (ICP) etch tool was used to achieve the pyramidal needle structure. A thin silicon nitride layer was deposited after a thick photoresist layer was coated and reflowed at 120 °C. The silicon nitride layer and residual photoresist on the tips of the pyramidal structures were removed using reactive ion etching (RIE). Electrochemical etching in MeCN/HF was carried out to generate porous silicon on the tips of the microneedles. The fabricated microneedle array has potential applications in drug delivery, since the porous tips can be loaded with a high molecular weight drug. Analytic solutions to the critical loadings of the fabricated microneedle structure are also presented. The variations of the square cross-section were expressed as a function of the axial coordinate to analyze the bending normal stress and critical buckling loading. This analytic method can also be used for other microneedle structures with different cross-sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.