Abstract

A facile microexplosion approach has been successfully developed to produce an interwoven mesopore network in zeolite crystals via the rushing-out of gases generated by decomposition of H2O2 under microwave irradiation. This “gas imprint” method creates the mesopores from the interior crystal toward the exterior, in line with the direction of the pristine microporous channels, and is different from the previous methods in which the reagent starts an attack from the crystal surface and perforates inward. The created mesopores extend throughout the whole crystal and highly blend into the intrinsic micropores around. The acidity of zeolite is also well preserved due to this unique mechanism of pore creation. The continuous high quality hierarchical architecture with intact acidity leads to a notable increase both in the conversion of 2-methoxynaphthalene acylation and in the selectivity to the target molecule of 2-acetyl-6-methoxynapthalene. This microexplosion approach offers an efficient synthesis protocol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.