Abstract

Microencapsulation of phase change materials (PCMs) is an attractive opportunity for broadening their applications. In this respect, a novel encapsulating polymer, ethyl cellulose (EC) was used to entrap n-hexadecane (HD) PCM by an emulsion-solvent evaporation method. Emulsifiers strongly influenced the size and morphology of the forming EC–HD composite microcapsules, and they also had a great impact on their thermal properties. All of the three emulsifiers were suitable to prepare quasi core–shell microparticles, though the high porosity of shells resulted in serious leakage in composites prepared by Tween 80, and permeability of particles manufactured by poly(vinyl alcohol) (PVA), as can be stated from scanning electron microscopy and differential scanning calorimetry analysis. Interfacial tension measurements and spreading coefficient analysis enabled the prediction of preparation conditions for usable core–shell microcapsules. Volume-weighted mean diameters of the microparticles were 319, 92 and 85 μm formed by Tween 80, PVA and poly(methacrylic acid sodium salt) (PMAA), respectively. A significantly higher HD content and latent heat storage capacity could be achieved using PVA and PMAA than with Tween 80. The thermal cycling test indicated good thermal reliability of microcapsules prepared by PMAA, while the energy-storing capacity of composites prepared by PVA decreased substantially, and a dramatic reduction was found in microparticles using Tween 80.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.