Abstract

Ionic polymeric gels are three-dimensional networks of cross-linked macromolecular polyelectrolytes that swell or shrink in aqueous solutions in addition of alkali or acids, respectively. Linear reversible dilation and contraction of the order of more than 1000 per cent are observed in a laboratory for polyacrylonitrile fibers. It is experimentally observed that swelling and shrinking of ionic gels can also be induced electrically. Thus, direct computer control of large expansions and contractions of ionic polymeric gels by means of a voltage gradient appears to be possible. A mechanism is presented for the reversible nonhomogeneous large deformations and in particular for bending of strips of ionic polymeric gels in the presence of an electric field. Exact expressions are given relating the deformation characteristics of the gel to the electric field strength or voltage gradient, gel dimensions and other physical parameters such as the resistance and the capacitance of the gel strip. It is concluded that direct voltage control of such nonhomogeneous large deformations in ionic polymeric gels is possible. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.