Abstract

Part 1 completed the studies of five long-shafted, cellulose, frictional, hooked probabilistic fasteners. Part 2 identified three substructures prevalent in the natural world for probabilistic fasteners and detailed the collection of voxel dataclouds while measuring from the natural fluorescence of their composing chitin and cellulose under the laser illumination of a confocal microscope. In this part 3, consideration is given to the development of a behaviour-optimised bioinspired probabilistic attachment system that is thermodynamically inert due to attachment substructures, such as interlocking setae, that act as arrestors and temporary interlocking devices. The three devices of part 2 are considered for their relative merits, and one part is modelled for a rapid prototyping device. If one is considering the question of shape versus material, then it is at this stage that it is a very important issue since one is considering fundamental, simple shapes and the materials used to form them are of finite variety. Hence, the final design will hinge upon design for manufacture and component material qualities, in this case copper.

Highlights

  • It is strange to think that one can find a biomimetic principle on demand

  • Describing the reconstruction from 2‐D of the A. minus hook It was once impossible to take this work past the hypothetical allusion to a possible solution through the invention of some material that could be used to manufacture at this scale

  • We have dictated that it should be the long-shafted hook of the A. minus that is the model, the decision made as a basis of the results of part 2 of the study when we discovered that the evolutionary sparkle had gone into the development of a cellulose hook that was fibrous and

Read more

Summary

Introduction

This study, has found at least one in the consideration of its objective, to take all known studies of hooks and to compare them and others in order to define a new hook that is advantageous to design for a purpose that precludes all known uses so far, i.e. that is intended for a use that has not so far been defined It is such that it can be assumed that all the new designs are going to be on the purpose/possibility frontier, namely in this case, microdesign and the design of micron-ranged size structures that do not altogether behave in a “normal” way under use, such as the tarsal hooks of an insect and their manner of sticking or adhering to a surface. There are new ways of doing things that need chronicling so that their progress can be chartered and modified according to new discovery

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.