Abstract
We report the formation of self-organized microconical arrays on copper surface when exposed to high flux (5.4 × 1015 cm−2 s−1) of 2 keV argon ion beams at normal incidence. The created microconical arrays are explored for field emission properties. The surface morphologies are investigated by scanning electron microscopy and atomic force microscopy. The local work function variation is analyzed by Kelvin probe force microscopy, and the argon content in the irradiated layer is measured with X-ray Photoelectron Spectroscopy. The average aspect ratio (base width/height) of microstructures for individual irradiated samples is found to increase from 0.7 to 1.5 with a decrease in ion fluence. The ion concentration is highest (3.89 %) for a fluence of 4.7 × 1018 cm−2, which asserts the formation of atomically heterogeneous surface due to subsurface ion implantation. An enhancement in the field emission properties of the argon ion–treated copper substrates at a fluence of 4.7 × 1018 cm−2 with a low turn-on voltage of 2.33 kV and with electron emission current 0.5 nA has been observed. From the Fowler–Nordheim equations, the field enhancement factor is calculated to be 5,561 for pristine copper, which gets enhanced by a factor of 2–8 times for irradiated substrates. A parametric model is considered, by taking into account the modified local work function caused due to structural undulations of the microstructures and presence of implanted argon ions, for explaining the experimental results on the field enhancement factor and emission current.
Highlights
Physical texturing on material surface by bombardment of energetic ion species is a contaminationfree and controlled technique of generating micro- or nanostructures of required geometry, composition, and concentration [1,2,3]
The growth mechanism of microconical arrays needs to be explored with a proper support
The high enhancement factor of pristine is due to copper being a
Summary
Physical texturing on material surface by bombardment of energetic ion species is a contaminationfree and controlled technique of generating micro- or nanostructures of required geometry, composition, and concentration [1,2,3]. Electron emitters with high current density and low turn-on field is desirable for their practical applications in cold electron sources like field emission cathodes (vacuum electronic devices), flat panel displays, gas sensors, magnetic storage devices, and microwave amplifiers including catalytic reactors [8,9,10,11,12]. The development of surface structures with compositional heterogeneities at the atomic level because of ion irradiation is an important field of research in material processing and thin film studies because of the controllability in the field emission properties that it can offer. The electrical, surface, and optical properties of such atomically heterogeneous metallic systems with patterned arrays of micro- or nanometric dimensions produced by irradiation of high fluence of energetic inert ions have been investigated earlier [23,24,25]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.