Abstract
To characterize and compare microcirculatory changes in the rat small intestinal tissue layers when temporal or spatial microvascular perfusion heterogeneity is present. Intravital videomicroscopy with an orthogonal polarization spectral imaging technique was used to visualize the microcirculation of the intestinal mucosa and the longitudinal muscle during systemic (hemorrhagic shock, endotoxemia, and nitric oxide synthesis inhibition) and local (ischemia-reperfusion) circulatory disorders. The average capillary red blood cell velocity (A-RBCV) was calculated from the relative durations of the observed velocity or as a function of the perfused area, respectively. During hemorrhagic hypotension/resuscitation, timewise (flowmotion) and spatial heterogeneity were found to evolve in the mucosal villi and muscle layer. During resuscitation, the A-RBCV decreased by 40% in the villi and by 60% in the muscle. Reperfusion after a 30-min period of mesenteric ischemia caused a 20% reduction in A-RBCV in both layers, while endotoxin infusion caused a temporary 20% decrease in the mucosa, and a persistent, >25% decrease in the muscle. Nitric oxide synthesis inhibition resulted in spatial heterogeneity within the villi and in a 40% decrease in A-RBCV in both structures. Calculations of timewise variability and of heterogeneity within and between layers can be used for the comparison of distinct intramural microcirculatory changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.