Abstract

Breast cancer is the leading cause of death in women. Early identification can contribute significantly to improving the survival rate. For diagnosis and accurate therapy automatic detection of micro-calcification is therefore essential. In the paper, an automated technique is utilized in the mammogram images according to their micro-calcification classification. The automated technique is working with the combination of Deep Belief Neural Network (DBNN) and Chimp Optimization Algorithm (COA). The proposed method is working with three phases such as pre-processing phase, feature extraction, and classification phase. In the pre-processing phase, a median filter is utilized to remove unwanted information from the images. In the feature extraction phase, Gray Level Co-Occurrence Matrix (GLCM), Scale-Invariant Feature Transform (SIFT), and Hu moments are utilized to extract essential features from the mammogram images. After that, the detection and classification are performed on the mammogram images according to their micro-calcifications with the utilization of the proposed advanced deep learning method. From the classification stage, the normal and abnormal images are identified from the images. The proposed method is implemented in the MATLAB platform and analyzed their statistical performances like accuracy, sensitivity, specificity, precision, recall, and F-measure. To evaluate the effectiveness of the proposed method this is compared with the existing method such as Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.