Abstract

Algae are reported to be corrosive, while little is known about the role of the algae associated bacteria in the corrosion process. In the present study, Halomonas titanicae was isolated from a culture of an alga strain, Spirulina platensis, and identified through 16S rRNA gene analysis. Corrosion behavior of 304L stainless steel (SS) coupons in the presence and absence of H. titanicae was characterized by using electrochemical measurements and surface analysis. The results showed that H. titanicae significantly accelerated the corrosion rate and decreased the pitting potential of 304L SS in the biotic medium. After removal of the corrosion products and biofilms, severe pitting corrosion caused by H. titanicae was observed. The largest pit depth after 14 d reached 6.6 μm, which was 5.5 times higher than that of the sterile control (1.2 μm). This is the first report revealing that an alga associated bacterium can induce microbiologically influenced corrosion (MIC), and a further concern is raised that whether algae play a role in the MIC process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.