Abstract
Salinity greatly affects the microbial degradation process of crude oil; thus, the isolation and identification of halotolerant microbes is essential. Limited studies explored how microbes respond to increased salinity. In this study, an oil-degrading bacterium Priestia megaterium FDU301 was isolated from the Dagang oil field, which can tolerate a salinity of 6%. Compared to the non-saline condition, oil degradation ratios by P. megaterium FDU301 increased by 15.27% and 11.26% in 0.5% and 3.5% salinity media, respectively. Meanwhile, bacteria degraded various components of crude oil more thoroughly in saline environments, especially mid-chain hydrocarbons (C11-C18). Surface tension under salt stress was lower than that in the non-saline medium, indicating that the amount of biosurfactants produced by bacteria was increased. The microbial activity enhanced markedly in response to increased salinity, which was the main factor for the high degradation ability. As a vital component of biofilms, the production of polysaccharides was accelerated with P. megaterium FDU301 inoculation in saline environments. These results indicate that P. megaterium FDU301 has great potential application in oil bioremediation in saline environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.