Abstract

Anaerobic oxidation of methane (AOM) is capable of coupling the reduction of various substrates, which plays a crucial role in accelerating the abatement of pollution. In this study, we employed a sequencing batch reactor (SBR) to enrich a mixed consortium that included AOM microbes and examined the ensuing microbial reduction of tellurate. To obtain the mixed consortium, we enriched AOM microbes in anaerobic conditions utilizing methane as the only electron donor, with nitrate serving as the electron acceptor. We evaluated the abundance of typical methane-oxidizing microbes and associated genes in the reactor using quantitative PCR. Notably, the enriched microbes were able to achieve microbial tellurate reduction and produce elemental tellurium. An analysis of community structure further indicated the vital roles of methanotrophs, denitrifiers, and other heterotrophs in the reactor, although their molecular mechanisms require further investigation. These findings underscore the role of enriched microbial communities in tellurate reduction using a lab-scale SBR, laying the groundwork for future studies into the mechanism of this process, which utilizes methane as an electron donor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.