Abstract
A novel three-chambered microbial desalination cell (MDC) was designed for evaluating desalination of synthetic ground water with simultaneous energy generation and resource recovery. The specific design enabled efficient interelectrode communication by reducing the distance of separation and also maintained an appropriate surface area to volume ratio. MDC were evaluated in different circuitry modes (open and closed) to assess the desalination efficiency, bioelectricity generation, resource recovery, substrate utilization and bioelectrokinetics. The closed circuit operation has showed efficient desalination efficiency (51.5%) and substrate utilization (70%). Owing to the effective electron transfer kinetics, closed circuit mode of operation showed effective desalination of the synthetic ground water with simultaneous power production (0.35W/m2). Circuitry specific biocatalyst activity was observed with higher peak currents (10.1mA; −5.98mA) in closed circuit mode. MDC can function as sustainable and alternative solution for ground and surface water treatment with power productivity and resource recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.