Abstract

The use of mulch made of biodegradable plastic in agriculture is expected to help solve the problem of the enormous amount of plastic waste emission, and to save the labor of removing the mulch after harvesting crops. In this study, we isolated a microorganism possessing the ability to degrade one of the promising biodegradable plastics, poly(butylene succinate) (PBS), and investigated the degradation characteristics of the microorganism in soil environments. Fungal strain WF-6, belonging to Fusarium solani, that had not been reported could be isolated from farmland as the PBS-degrading microorganism. Strain WF-6 degraded 2.8 percent of the PBS in a 14-day experimental run in a sterile soil environment, as determined by measuring CO 2 evolution. Furthermore, we ascertained that the degradability of strain WF-6 was enhanced by co-culturing with the newly isolated bacterial strain Stenotrophomonas maltophilia YB-6, which itself does not show PBS-degrading activity. We then investigated the effects of cell density of the indigenous microorganisms in the soil environments on the degradability of the co-culture of strains WF-6 and YB-6 by inoculating these strains into non-sterilized and partially sterilized soils, which contained 10 8, 10 6, and 10 3 CFU/g-dry solid of soil of indigenous microorganisms. The degradability strongly depended on the cell density level of the indigenous microorganisms and was remarkably diminished when the cell concentration level was the highest, 10 8 CFU/g-dry solid. Quantitative PCR analysis revealed that the growth of strains WF-6 and YB-6 was inhibited in the non-sterile soil environment with the highest cell density level of the indigenous microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.