Abstract

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. Understanding PEx ecology is challenged by high inter-patient variability in airway microbial community profiles. We analyze bacterial communities in 880 CF sputum samples collected during an observational prospective cohort study and develop microbiome descriptors to model community reorganization prior to and during 18 PEx. We identify two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx show hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx display stochasticity and increased diversity. A simulation of antimicrobial treatment predicts better efficacy for hierarchically organized communities. This link between PEx, microbiome organization, and treatment success advances the development of personalized clinical management in CF and, potentially, other obstructive lung diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.