Abstract

AbstractMicrobial biomass is known to decrease with soil drying and to increase after rewetting due to physiological assimilation and substrate limitation under fluctuating moisture conditions, but how the effects of changing moisture conditions vary between dry and wet environments is unclear. Here, we conducted a meta‐analysis to assess the effects of elevated and reduced soil moisture on microbial biomass C (MBC) and microbial biomass N (MBN) across a broad range of forest sites between dry and wet regions. We found that the influence of both elevated and reduced soil moisture on MBC and MBN concentrations in forest soils was greater in dry than in wet regions. The influence of altered soil moisture on MBC and MBN concentrations increased significantly with the manipulation intensity but decreased with the length of experimental period, with a dramatic increase observed under a very short‐term precipitation pulse. Moisture effect did not differ between coarse‐textured and fine‐textured soils. Precipitation intensity, experimental duration, and site standardized precipitation index (dry or wet climate) were more important than edaphic factors (i.e., initial water content, bulk density, and clay content) in determining microbial biomass in response to altered moisture in forest soils. Different responses of microbial biomass in forest soils between dry and wet regions should be incorporated into models to evaluate how changes in the amount, timing, and intensity of precipitation affect soil biogeochemical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.