Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.