Abstract

BackgroundThe preservation of fish egg quality after ovulation-control protocols is a major issue for the development of specific biotechnological processes (e.g. nuclear transfer). Depending on the species, it is often necessary to control the timing of ovulation or induce the ovulatory process. The hormonal or photoperiodic control of ovulation can induce specific egg quality defects that have been thoroughly studied. In contrast, the impact on the egg transcriptome as a result of these manipulations has received far less attention. Furthermore, the relationship between the mRNA abundance of maternally-inherited mRNAs and the developmental potential of the egg has never benefited from genome-wide studies. Thus, the present study aimed at studying the rainbow trout (Oncorhynchus mykiss) egg transcriptome after natural or controlled ovulation using 9152-cDNA microarrays.ResultsThe analysis of egg transcriptome after natural or controlled ovulation led to the identification of 26 genes. The expression patterns of 17 of those genes were monitored by real-time PCR. We observed that the control of ovulation by both hormonal induction and photoperiod manipulation induced significant changes in the egg mRNA abundance of specific genes. A dramatic increase of Apolipoprotein C1 (APOC1) and tyrosine protein kinase HCK was observed in the eggs when a hormonal induction of ovulation was performed. In addition, both microarray and real-time PCR analyses showed that prohibitin 2 (PHB2) egg mRNA abundance was negatively correlated with developmental success.ConclusionFirst, we showed, for the first time in fish, that the control of ovulation using either a hormonal induction or a manipulated photoperiod can induce differences in the egg mRNA abundance of specific genes. While the impact of these modifications on subsequent embryonic development is unknown, our observations clearly show that the egg transcriptome is affected by an artificial induction of ovulation.Second, we showed that the egg mRNA abundance of prohibitin 2 was reflective of the developmental potential of the egg.Finally, the identity and ontology of identified genes provided significant hints that could result in a better understanding of the mechanisms associated with each type of ovulation control (i.e. hormonal, photoperiodic), and in the identification of conserved mechanisms triggering the loss of egg developmental potential.

Highlights

  • The preservation of fish egg quality after ovulation-control protocols is a major issue for the development of specific biotechnological processes

  • We showed that the egg messenger RNAs (mRNAs) abundance of prohibitin 2 was reflective of the developmental potential of the egg

  • The identity and ontology of identified genes provided significant hints that could result in a better understanding of the mechanisms associated with each type of ovulation control, and in the identification of conserved mechanisms triggering the loss of egg developmental potential

Read more

Summary

Introduction

The preservation of fish egg quality after ovulation-control protocols is a major issue for the development of specific biotechnological processes (e.g. nuclear transfer). Hormones of maternal origin supplied to the embryo by the egg have a significant effect on embryonic development as shown by several studies [9]. Some maternal mRNAs are involved in embryonic germ cells formation in fish [12], but other oocyte mRNAs, such as those involved in growth regulation, could be necessary to ensure a normal early development [13]. The possibility that specific oocyte mRNAs might be affected when egg quality is experimentally decreased has been seriously suggested by a previous work dealing with the effect of egg post-ovulatory ageing on the mRNA levels of many genes (~40) in rainbow trout eggs [16]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.