Abstract

Emerging contaminants (ECs) in different ecosystems have consistently been acknowledged as a global issue due to toxicity, human health implications, and potential role in generating and disseminating antimicrobial resistance. The existing wastewater treatment system is incompetent at eliminating ECs since the effluent water contains significant concentrations of ECs, viz., antibiotics (0.03–13.0 μg L-1), paracetamol (50 μg L-1), and many others in varying concentrations. Microalgae are considered as a prospective and sustainable candidate for mitigating of ECs owing to some peculiar features. In addition, the microalgal-based processes also offer cost and energy-efficient solutions for the bioremediation of ECs than conventional treatment systems. It is pertinent that, microalgal-based processes also provides waste valorization benefits as microalgal biomass obtained after ECs treatment can be potentially applied to generate biofuels. Moreover, microalgae can effectively utilize alternative metabolic (cometabolism) routes for enhanced degradation of ECs. Additionally, the ECs removal via the microalgal biodegradation route is highly promising as it can transform the ECs into less toxic compounds. The present review comprehensively discusses different mechanisms involved in removing ECs and various factors that affect their removal. Also, the technoeconomic feasibility of microalgae than other conventional wastewater treatment methods is summarised. The review also highlighted the different molecular and genetic tools that can augment the activity and robustness of microalgae for better removal of organic contaminants. Finally, we have summarised the challenges and future research required towards microalgal-based bioremediation of emerging contaminants (ECs) as a holistic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.