Abstract

Fiber Bragg gratings are key components for optical fiber sensing applications in harsh environments. This paper investigates the structural and chemical characteristics of femtosecond laser photo-inscribed microvoids. These voids are at the base of type III fs-gratings consisting of a periodic array of microvoids inscribed at the core of an optical fiber. Using high-resolution techniques such as quantitative phase microscopy, electron transmission microscopy, and scattering-type scanning near-field IR optical microscopy, we examined the structure of the microvoids and the densified shells around them. We also investigated the high-temperature behavior of the voids, revealing their evolution in size and shape under step isochronal annealing conditions up to 1250 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.