Abstract

Tropospheric ozone is a phytotoxic gaseous pollutant with global warming potential that disrupts the plants growth and development directly or through climate change. Ozone enters into a plant???s body through stomatal pores and develops oxidative stress, which results in injury to foliage and modifies leaf micro-morphology and anatomy. A field study was conducted to assess the morphological, micro-morphological, and anatomical response of groundnut cultivars (Arachis hypogaea L.) to enhance the level of ozone. This study observed ozone-like visible injury symptoms on all groundnut cultivars. Visible injury was maximum in cultivar Dh-86 and minimum in cultivar TPG-41. Micro-morphological characteristics, such as increase in stomata, epidermal cells number, and its index, were also increased under enhanced ozone-exposed plants. The highest stomatal index was found in cultivar TPG-41 and lowest were noted in cultivar GG-20. Cultivars TAG-24 > TG-37A > and Dh-86 show moderate modification in the morphological and micro-morphological characteristics of plants. Elevated ozone also affected the stomatal movement and leaf internal tissue. Most of the stomata of all the groundnut cultivars were observed as closed during the enhanced ozone exposure, suggesting a protective mechanism from ozone stress. The study concluded that the micro-morphological and anatomical characteristics are important aspects to determine the effect of ozone on plants and to influence plants sensitivity to ozone. On the basis of these characteristics, cultivar TPG-41 was found to be less sensitivity, while cultivar Dh-86 was found to be highly sensitive to ozone pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.