Abstract

The processing of metals through the application of high-pressure torsion (HPT) provides the potential for achieving exceptional grain refinement in bulk metal solids. These ultrafine grains in the bulk metals usually show superior mechanical and physical properties. Especially, the development of micro-mechanical behavior is observed after significant changes in microstructure through processing and it is of great importance for obtaining practical future applications of these ultrafine-grained metals. Accordingly, this presentation demonstrates the evolution of small-scale deformation behavior through nanoindentation experiments after HPT on various metallic alloys including a ZK60 magnesium alloy, a Zn-22% Al eutectoid alloy and a high entropy alloy. Special emphasis is placed on demonstrating the essential microstructural changes of these materials with increased straining by HPT and the evolution of the micro-mechanical responses in these materials by measuring the strain rate sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.