Abstract

Future 3D electronics packaging systems will require micro cooling systems that can be integrated and permit the continued use of air as a coolant. To achieve this, new types of silicon micro heat exchangers were made using an anisotropic etching process. Various heat exchanger configurations and sizes were made using sandwich and stacking techniques. They can be used either as a heat exchanger for direct cooling with compressed air or as a heat pipe and thermosyphon for indirect cooling with fan-blown air. The performance characteristics of the various cooling systems are stated. The micro-heat-pipe can be used for power loss densities of up to 3 W·cm −2, the direct air cooling up to 15 W·cm −2 and the thermosyphon up to 25 W·cm −2. Cooling performances are achieved that are otherwise only possible with liquid cooling. The practical application of the micro cooling system is demonstrated using the example of the Pentium processor. With a power loss of 15 W, the high-performance micro cooling system is able to limit the increase in operating temperature to 15 K. The volume of the micro heat exchanger is 2.5 cm 3 and therefore considerably smaller than that of standard heat sinks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.