Abstract

Electrical stimulation via cortically implanted electrodes has been proposed to treat a wide range of neurological disorders. Effectiveness has been limited, however, in part due to the inability of conventional electrodes to activate specific types of neurons while avoiding other types. Recent demonstrations that magnetic stimulation from a micro-coil can selectively activate pyramidal neurons (PNs) while avoiding passing axons suggest the possibility that such an approach can overcome some this limitation and here we use computer simulations to explore how the micro-coil design influences the selectivity with which neurons are activated. A computational model was developed to compare the selectivity of magnetic stimulation induced by rectangular-, V-, and W-shaped coil designs. The more promising designs (V- and W-shapes) were fabricated for use in electrophysiological experiments including in vitro patch-clamp recording and calcium imaging (GCaMP6f) of mouse brain slices. Both V- and W-shaped coils reliably activated layer 5 (L5) PNs but V-coils were more effective while W-coils were more selective. Activation thresholds with double-loop coils were approximately one-half those of single-loop coils. Calcium imaging revealed that both V- and W-coils better confine activation than electrodes. Individual design features can influence both the strength as well as the selectivity of micro-coils and can be accurately predicted by computer simulations. Our results show that how coil design influences the response of cortical neurons to stimulation and are an important step toward the development of next-generation cortical prostheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.