Abstract

The micelle formation of a poly(4-pyridinemethoxymethylstyrene)-block-polystyrene diblock copolymer (PPySt-b-PSt) was investigated in nonselective solvents using bifunctional and trifunctional carboxylic acids. The copolymer showed no self-assembly in 1,4-dioxane and tetrahydrofuran (THF) because the PPySt and PSt blocks were solvophilic to the solvents. Dynamic light scattering studies demonstrated that the copolymer formed micelles in the nonselective solvents in the presence of bifunctional carboxylic acids. Oxalic acid, maleic acid, citric acid, and phospholic acid promoted the micellization, while malonic acid, succinic acid, and glutalic acid had no effect on the micellization. The micellar size, aggregation number, and critical micelle concentration were dependent not only on the acid strength but also on the type of acid and the functionality. The micellization was also affected by the solvent quality. The micellization proceeded more effectively in 1,4-dioxane than in THF. It was found that the micellization occurred by hydrogen bonding between the pyridine moiety and the carboxylic acid and by the interaction among the carboxylic acids. This is because the copolymer needed over an equivalent of the acid to the PySt unit to complete the micellization. Furthermore, monofunctional carboxylic acid such as trichloroacetic acid and trifluoroacetic acid promoted the micellization, although dichloroacetic acid had no effect on the micellization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.