Abstract

The viscoelasticity of aqueous micellar solutions of two oxyethylene/oxybutylene block copolymers (E(92)B(18) and B(20)E(510)) has been investigated using a torsional resonator operated at 26 kHz. For both systems considered, values of the dynamic viscosity (eta'(infinity)) point to partial draining of the micellar corona induced by the high-frequency oscillatory field. At low effective volume fractions, values of the elastic modulus (G'(infinity)) indicate that the repulsive interactions between micelles can be modeled by a power law function u(r) proportional to 1/r(nu) with exponents close to 13 and 6 for copolymers E(92)B(18) and B(20)E(510) respectively. At a critical copolymer concentration (c*) plots of log(G'(infinity)) against log(c) deviate from the straight lines established at low concentrations, implying that the systems undergo ergodic/nonergodic transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.