Abstract

Sensing external stimulation is crucial for central processing in the brain and subsequent behavioral expression. Although sensory alteration or deprivation may result in behavioral changes, most studies related to the control of behavior have focused on central mechanisms. Here we created a sensory deficit model of mice lacking acid-sensing ion channel 3 (Asic3(-/-)) to probe behavioral alterations. ASIC3 is predominately distributed in the peripheral nervous system. RT-PCR and immunohistochemistry used to examine the expression of Asic3 in the mouse brain showed near-background mRNA and protein levels of ASIC3 throughout the whole brain, except for the sensory mesencephalic trigeminal nucleus. Consistent with the expression results, Asic3 knockout had no effect on synaptic plasticity of the hippocampus and the behavioral tasks of motor function, learning and memory. In anxiety behavior tasks, Asic3(-/-) mice spent more time in the open arms of an elevated plus maze than did their wild-type littermates. Asic3(-/-) mice also displayed less aggressiveness toward intruders but more stereotypic repetitive behaviors during resident-intruder testing than did wild-type littermates. Therefore, loss of ASIC3 produced behavioral changes in anxiety and aggression in mice, which suggests that ASIC3-dependent sensory activities might relate to the central process of emotion modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.