Abstract
This article presents a numerical solution for the magnetohydrodynamic (MHD) non-Newtonian power-law fluid flow over a semi-infinite non-isothermal stretching sheet with internal heat generation/absorption. The flow is caused by linear stretching of a sheet from an impermeable wall. Thermal conductivity is assumed to vary linearly with temperature. The governing partial differential equations of momentum and energy are converted into ordinary differential equations by using a classical similarity transformation along with appropriate boundary conditions. The intricate coupled non-linear boundary value problem has been solved by Keller box method. It is important to note that the momentum and thermal boundary layer thickness decrease with increase in the power-law index in presence/absence of variable thermal conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.