Abstract

The C-2W device (also known as "Norman") at TAE Technologies has proven successful at generating stable, long-lived field-reversed configuration (FRC) plasmas with record temperatures. The largest Mirnov probe array in C-2W measures three components of the magnetic field just inside the vessel wall at 64 locations distributed approximately evenly in the cylindrical vessel's azimuthal and axial dimensions. This nearly rectangular array of probes creates a unique opportunity to apply higher order singular value decomposition (HOSVD) to efficiently analyze the external magnetic field data for the purposes of reconstructing the magnetohydrodynamic mode structures in the FRC. In the first application of this method for this purpose, HOSVD is shown to quickly and effectively detect and separate toroidal modes while indicating longitudinal dependence of mode phases and amplitudes, enhancing the coherence and utility of the vast quantity of data produced by this array. Analysis of the data from the entire array at once via HOSVD proves not only computationally more efficient than methods that separately analyze groups of probes at different axial locations but also leads to improved mode resolution at axial locations where these modes are weaker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.