Abstract

This study intends to semi-analytically investigate the steady 3D boundary layer flow of a SiC-TiO2/DO hybrid nanofluid over a porous spinning disk subject to a constant vertical magnetic field. Here, the novel attitude to single-phase hybrid nanofluid model corresponds to considering nanoparticles and base fluid masses to compute solid equivalent volume fraction, solid equivalent density, and also solid equivalent specific heat at constant pressure. The basic PDEs are transformed into dimensionless ODEs using Von Karman similarity transformations, which are then solved numerically using bvp4c function. Results indicate that mass suction and magnetic field effects diminish all hydrodynamic and thermal boundary layer thicknesses. Finally, a significant report is presented to investigate quantities of engineering interest due to governing parameters’ effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.