Abstract

In this study, a new computing model is developed using the strength of feed-forward neural networks with the Levenberg–Marquardt scheme-based backpropagation technique (NN-BLMS). It is used to find a solution for the nonlinear system obtained from the governing equations of the magnetohydrodyanmic (MHD) boundary layer flow over a stretching sheet. Moreover, the partial differential equations (PDEs) for the MHD boundary layer flow over a stretching sheet are converting into ordinary differential equations (ODEs) with the help of similarity transformation. A dataset for the proposed NN-BLMM-based model is generated at different scenarios by a variation of various embedding parameters: Deborah number β and magnetic parameter (M). The training (TR), testing (TS), and validation (VD) of the NN-BLMS model are evaluated in the generated scenarios to compare the obtained results with the reference results. For the fluidic system convergence analysis, a number of metrics, such as the mean square error (MSE), error histogram (EH), and regression (RG) plots, are utilized for measuring the effectiveness and performance of the NN-BLMS infrastructure model. The experiments showed that comparisons between the results of proposed model and the reference results match in terms of convergence up to E-02 to E-10. This proves the validity of the NN-BLMS model. Furthermore, the results demonstrated that there is a decrease in the thickness of the boundary layer by increasing the Deborah number and magnetic parameter. The importance of the experiment can be seen due to its industrial applications such as MHD power generation, MHD generators, and MHD pumps.

Highlights

  • Hakeem Ullah,1 Imran Khan,1 Mehreen Fiza,1 Nawaf N

  • A dataset for the proposed NN-BLMM-based model is generated at different scenarios by a variation of various embedding parameters: Deborah number (β) and magnetic parameter (M). e training (TR), testing (TS), and validation (VD) of the NN-BLMS model are evaluated in the generated scenarios to compare the obtained results with the reference results

  • For the fluidic system convergence analysis, a number of metrics, such as the mean square error (MSE), error histogram (EH), and regression (RG) plots, are utilized for measuring the effectiveness and performance of the NN-BLMS infrastructure model. e experiments showed that comparisons between the results of proposed model and the reference results match in terms of convergence up to E-02 to E-10. is proves the validity of the NN-BLMS model

Read more

Summary

Introduction

Hakeem Ullah ,1 Imran Khan,1 Mehreen Fiza,1 Nawaf N. E key aspects of the proposed computing paradigm are given as follows: A new application based on artificial intelligence-based computing using neural network backpropagated with Levenberg–Marquard is implemented to study the MHD boundary layer flow with the stretching sheet e dataset for the NN-BLMS is generated for variations of Deborah and magnetic parameters through the OHAM

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.