Abstract
In this paper, we present an approach for multi-level parallel-in-time (PinT) electromagnetic transient (EMT) simulation. We evaluate the approach in the context of power electronics system-level simulation. While PinT approaches to power electronics simulations based on two-level algorithms have been thoroughly explored in the past, multi-level PinT approaches have not yet been investigated. We use the multigrid-reduction-in-time (MGRIT) method to parallelize a dedicated EMT simulation tool which is capable of switching between different converter models as it operates. The presented approach yields a time-parallel speed-up of up to 10 times compared to the sequential-in-time implementation. We also show that special care has to be taken to synchronize the time grids with the electronic components’ switching periods, indicating that further research into the usage of different models from adequate model hierarchies is necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.