Abstract

Emerging data suggest that a subset of patients with diffuse isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG) who receive adjuvant temozolomide (TMZ) recur with hypermutation in association with malignant progression to higher-grade tumors. It is currently unclear why some TMZ-treated LGG patients recur with hypermutation while others do not. MGMT encodes O6-methylguanine-DNA methyltransferase, a DNA repair protein that removes cytotoxic and potentially mutagenic lesions induced by TMZ. Here, we hypothesize that epigenetic silencing of MGMT by promoter methylation facilitates TMZ-induced mutagenesis in LGG patients and contributes to development of hypermutation at recurrence. We utilize a quantitative deep sequencing assay to characterize MGMT promoter methylation in 109 surgical tissue specimens from initial tumors and post-treatment recurrences of 37 TMZ-treated LGG patients. We utilize methylation arrays to validate our sequencing assay, RNA sequencing to assess the relationship between methylation and gene expression, and exome sequencing to determine hypermutation status. Methylation level at the MGMT promoter is significantly higher in initial tumors of patients that develop hypermutation at recurrence relative to initial tumors of patients that do not (45.7% vs 34.8%, P = 0.027). Methylation level in initial tumors can predict hypermutation at recurrence in univariate models and multivariate models that incorporate patient age and molecular subtype. These findings reveal a mechanistic basis for observed differences in patient susceptibility to TMZ-driven hypermutation. Furthermore, they establish MGMT promoter methylation level as a potential biomarker to inform clinical management of LGG patients, including monitoring and treatment decisions, by predicting risk of hypermutation at recurrence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.