Abstract

Piezoelectric ZnO thin films have been successfully used for multilayer surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices. Magnesium zinc oxide (Mg/sub x/Zn/sub 1-x/O) is a new piezoelectric material, which is formed by alloying ZnO and MgO. Mg/sub x/Zn/sub 1-x/O allows for flexibility in thin film SAW device design, as its piezoelectric properties can be tailored by controlling the Mg composition, as well as by using Mg/sub x/Zn/sub 1-x/O/ZnO multilayer structures. We report the metal-organic chemical vapor deposition (MOCVD) growth, structural characterization and SAW evaluation of piezoelectric Mg/sub x/Zn/sub 1-x/O (x<0.35) thin films grown on (011~2) r-plane sapphire substrates. The primary axis of symmetry, the c-axis, lies on the Mg/sub x/Zn/sub 1-x/O growth plane, resulting in the in-plane anisotropy of piezoelectric properties. SAW test devices for Rayleigh and Love wave modes, propagating parallel and perpendicular to the c-axis, were designed and fabricated. Their SAW properties, including velocity dispersion and piezoelectric coupling, were characterized. It has been found that the acoustic velocity increases, whereas the piezoelectric coupling decreases with increasing Mg composition in piezoelectric Mg/sub x/Zn/sub 1-x/O films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.