Abstract

Mg is often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from LTE. The astrophysical importance of Mg as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. The modelled spectra agree well with observed spectra. The line-to-line scatter in the derived abundances shows improvements compared to LTE. The observed Mg emission features at 7 and 12 microns in the spectra of the Sun and Arcturus are reasonably well reproduced. The modelling predicts non-LTE abundance corrections in dwarfs, both solar metallicity and metal-poor, to be very small (of order 0.01 dex), even smaller than found in previous studies. In giants, corrections vary greatly between lines, but can be as large as 0.4 dex. Our results emphasise the need for accurate data of Mg collisions with both electrons and H atoms for precise non-LTE predictions of stellar spectra, but demonstrate that such data can be calculated and that ab initio non-LTE modelling without resort to free parameters is possible. Grids of departure coefficients and abundance corrections for a range of stellar parameters are planned for a forthcoming paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.