Abstract
BackgroundAlthough chromosome missegregation during oocyte maturation (OM) is a significant contributor to human morbidity and mortality, very little is known about the causes and mechanisms of aneuploidy. Several investigators have proposed that temporal perturbations during OM predispose oocytes to aberrant chromosome segregation. One approach for testing this proposal is to temporarily inhibit the activity of protein proteolysis during OM. We used the reversible proteasome inhibitor MG-132 to transiently perturb the temporal sequence of events during OM and subsequently analyzed mouse metaphase II (MII) for cytogenetic abnormalities. The transient inhibition of proteasome activity by MG-132 resulted in elevated levels of oocytes containing extra chromatids and chromosomes.ResultsThe transient inhibition of proteasome-mediated proteolysis during OM by MG-132 resulted in dose-response delays during OM and elevated levels of aneuploid MII oocytes. Oocytes exposed in vitro to MG-132 exhibited greater delays during metaphase I (MI) as demonstrated by significantly (p < 0.01) higher levels of MI arrested oocytes and lower frequencies of premature sister chromatid separation in MII oocytes. Furthermore, the proportions of MII oocytes containing single chromatids and extra chromosomes significantly (p < 0.01) increased with MG-132 dosage.ConclusionsThese data suggest that the MG-132-induced transient delay of proteasomal activity during mouse OM in vitro predisposed oocytes to abnormal chromosome segregation. Although these findings support a relationship between disturbed proteasomal activity and chromosome segregation, considerable additional data are needed to further investigate the roles of proteasome-mediated proteolysis and other potential molecular mechanisms on chromosome segregation during OM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.