This review aims to draw attention to two issues of concern when we set out to make machine learning work in the chemical and materials domain, that is, statistical loss function metrics for the validation and benchmarking of data-derived models, and the uncertainty quantification of predictions made by them. They are often overlooked or underappreciated topics as chemists typically only have limited training in statistics. Aside from helping to assess the quality, reliability, and applicability of a given model, these metrics are also key to comparing the performance of different models and thus for developing guidelines and best practices for the successful application of machine learning in chemistry.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call