Abstract

This paper investigates the use of a complete metric space framework for providing denotational semantics to a real-time process algebra. The study is carried out in a non-interleaving setting and is based on a timed extension of Langerak's bundle event structures, a variant of Winskel's event structures. The distance function is based on the amount of time to which event structures do ‘agree’. We show that this intuitive notion of distance is a pseudo metric (but not a metric) on the set of timed event structures. A generalisation to equivalence classes of timed event structures in which we abstract from event names and non-executable events (events that can never appear) is shown to be a complete ultra-metric space. We show that the resulting metric semantics is an abstraction of an existing cpo-based denotational and a related operational semantics for the considered language.KeywordsEvent StructureOperational SemanticParallel CompositionUnique Fixed PointProcess AlgebraThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.