Abstract

Endothelial dysfunction is a key risk factor in diabetes-related multiorgan damage. Methylglyoxal (MGO), a highly reactive dicarbonyl generated primarily as a by-product of glycolysis, is increased in both type 1 and type 2 diabetic patients. MGO can rapidly bind with proteins, nucleic acids, and lipids, resulting in structural and functional changes. MGO can also form advanced glycation end products (AGEs). How MGO causes endothelial cell dysfunction, however, is not clear. Human aortic endothelial cells (HAECs) from healthy (H-HAECs) and type 2 diabetic (D-HAECs) donors were cultured in endothelial growth medium (EGM-2). D-HAECs demonstrated impaired network formation (on Matrigel) and proliferation (MTT assay), as well as increased apoptosis (caspase-3/7 activity and TUNEL staining), compared with H-HAECs. High glucose (25 mM) or AGEs (200 ng/ml) did not induce such immediate, detrimental effects as MGO (10 µM). H-HAECs were treated with MGO (10 µM) for 24 h with or without the ATP-sensitive potassium (KATP) channel antagonist glibenclamide (1 µM). MGO significantly impaired H-HAEC network formation and proliferation and induced cell apoptosis, which was reversed by glibenclamide. Furthermore, siRNA against the KATP channel protein Kir6.1 significantly inhibited endothelial cell function at basal status but rescued impaired endothelial cell function upon MGO exposure. Meanwhile, activation of MAPK pathways p38 kinase, c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) (determined by Western blot analyses of their phosphorylated forms, p-JNK, p-p38, and p-ERK) in D-HAECs were significantly enhanced compared with those in H-HAECs. MGO exposure enhanced the activation of all three MAPK pathways in H-HAECs, whereas glibenclamide reversed the activation of p-stress-activated protein kinase/JNK induced by MGO. Glyoxalase-1 (GLO1) is the endogenous MGO-detoxifying enzyme. In healthy mice that received an inhibitor of GLO1, MGO deposition in aortic wall was enhanced and endothelial cell sprouting from isolated aortic segment was significantly inhibited. Our data suggest that MGO triggers endothelial cell dysfunction by activating the JNK/p38 MAPK pathway. This effect arises partly through activation of KATP channels. By understanding how MGO induces endothelial dysfunction, our study may provide useful information for developing MGO-targeted interventions to treat vascular disorders in diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.