Abstract

AimsThere is growing evidence of an increased prevalence of osteoarthritis (OA) among people with diabetes. Synovial inflammation and increased expression of cyclooxygenase-2 (COX-2) are two key features of patients with OA. Methylglyoxal (MGO) is a common intermediate in the formation of advanced glycation end-products, and its concentration is also typically higher in diabetes. In this study, we investigated the effects of the treatment of different MGO concentrations to rabbit HIG-82 synovial cells on COX-2 expression. Main methodsThe MGO induced COX-2 mRNA expression was detected by quantitative polymerase chain reaction. The MGO induced COX-2 protein production and its signaling pathways were detected by western blotting. The nuclear factor-kappa B (NF-κB) nuclear translocation by MGO was examined by immunofluorescence. Key findingsIn the present study, we find that MGO has no toxic effects on rabbit synovial cells under the experimental conditions. Our analysis demonstrates that MGO induced COX-2 mRNA and protein production. Moreover, MGO induces p38-dependent COX-2 protein expression as well as the phosphorylations of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and Akt/mammalian target of rapamycin (mTOR)/p70S6K; however, inhibition of JNK and Akt/mTOR/p70S6K phosphorylations further activates COX-2 protein expression. Furthermore, MGO is shown to activate of nuclear factor-kappa B (NF-κB) nuclear translocation. SignificanceOur results suggest that MGO can induce COX-2 expression via a p38-dependent pathway and activate NF-κB nuclear translocation in synovial cells. These results provide insight into the pathogenesis of the synovial inflammation under the diabetic condition associated with higher MGO levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.