Abstract

DNA methylation has emerged as promising epigenetic markers for disease diagnosis. Both the differential mean (DM) and differential variability (DV) in methylation have been shown to contribute to transcriptional aberration and disease pathogenesis. The presence of confounding factors in large scale EWAS may affect the methylation values and hamper accurate marker discovery. In this paper, we propose a exible framework called methylDMV which allows for confounding factors adjustment and enables simultaneous characterization and identification of CpGs exhibiting DM only, DV only and both DM and DV. The proposed framework also allows for prioritization and selection of candidate features to be included in the prediction algorithm. We illustrate the utility of methylDMV in several TCGA datasets. An R package methylDMV implementing our proposed method is available at http://www.ams.sunysb.edu/~pfkuan/softwares.html#methylDMV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.