Abstract

AbstractThis review covers the recently discovered methylcellulose (MC) fibrils and their impact on MC thermogelation and overall gel strength. The thermogelation of MC aqueous solutions has been studied for nearly 100 years, but it has only recently been attributed to fibril formation at elevated temperatures. The assembly of a fibrillar network explains the general features of MC gels: the unusually high modulus, the turbidity, and the nonlinear rheological behavior at high strains. Recent scattering, atomic force microscopy (AFM) and cryogenic transmission electron microscopy (cryo‐TEM) experimental efforts have led to critical discoveries about the fibril structure. MC fibrils are 60% water by volume when in solution. The length of the fibrils, especially for shorter chains, is closely correlated with the MC chain contour length. On the other hand, the fibril radius does not depend on the temperature, molecular weight or concentration of MC chains but does seem to be correlated with chain stiffness. The discovery of MC fibrils represents a significant departure from the entanglement of polymer chains and localized phase separation based physical model of MC gelation, opens new questions about the mechanism of fibril formation and presents new pathways for stimulus responsive material design. © 2019 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.