Abstract

Studies of mammalian systems for the repair of O6-methylguanine in DNA have revealed large differences in the capacities of tissues and cells to perform this function and in the case of rat liver it has been shown that the O6-methylguanine repair system can be stimulated by exposure to hepatotoxic and hepatocarcinogenic regimes. In this report an assessment is made of possible relationships between toxic liver injury, DNA synthesis, cell proliferation and DNA repair by treating Wistar rats with agents selected to provide differing degrees of liver involvement. The effects of long-term (20 week) treatments with acetylaminofluorene (15 mg/kg/day), quinoxaline 1,4-dioxide (10 mg/kg/day), 4-aminobiphenyl-HCl (15 mg/kg/day) and pronethalol (20 mg/kg/day) were assessed, using the same strain of animals in which the original toxicity and carcinogenicity data were obtained. Repair of O6-methylguanine produced in liver DNA by a low, non-toxic dose (2 mg/kg) of [14C]dimethylnitrosamine was increased 3-4-fold throughout the period of treatment with acetylaminofluorene, to a lesser extent by quinoxaline 1,4-dioxide and 4-aminophenyl-HCl and not at all in the case of pronethalol. No evidence was obtained to indicate a direct relationship between O6-methylguanine repair and either the induced hepatotoxicity or the ensuing increased rates of DNA synthesis which occur following exposure to these agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.